Roll to Roll **Inspection Platform: Development of Optical Inspection for Flexible Thin Films**

General Donald R. Keith Memorial Capstone Conference Submission 47

The Team

Justin Bové, Computer Engineering

Alexander Burzynski, Industrial and Systems Engineering

Ryan Cadwell, Electrical Engineering, Lead

Nora Croutier, Industrial and Systems Engineering

Faculty Advisor: Mark Poliks

Binghamton University

Center for Advanced Microelectronics Manufacturing

Agenda

- Introduction
 - \circ Background
 - Project Scope
- Implementation and Analysis
 Defect Detection
 Thickness Reading
 Project Budget
- Conclusions

Introduction

- Advancing Microelectronics Manufacturing is needed to meet increasing demand
- Need for inspection due to the "micro"
- Aim: Develop inexpensive inline inspection process

Roll to Roll Conveyance Tool

Background: Microelectronics

- Circuitry
- Display Technology

- Photovoltaic Cells
- Transparent Antennas

https://www.leadingedgepower.com/images/produ ct/full/Flexible-solar-panel-100W-bent.jpg https://phys.org/news/2011-02-carbon-nanotube-transis tors-inexpensive-flexible.html http://qeprize.org/createthefuture/oled-screens-technology-futu re/

Background: Fabrication

Courtesy of Binghamton University

Background: The Need for Thin Film Inspection

R

ρ

W

Defect Inspection:

Diameter of human hair: 17 - 181 µm Current Lower Limits for Microelectronics Features: Width: ~ .007 um = ~ 7nm Height: ~ .001 µm = ~.1 nm

Defects may include: Scratches, dust, skin cells, hair, or other ambient matter

Thickness Inspection:

- : resistance
 - : resistivity
 - : film thickness
 - : length
 - : width

http://www.thesolarspark.co.uk/the-science/sol ar-power/thin-film/perovskite-solar-cells/

Project Scope: Requirements

Major System Requirement One:	Major System Requirement Two:
Defect Detection	Thickness Reading
The system shall be able to detect standard defects in roll material such as surface voids (scratches, cracking, flaking), uneven material deposition, or contamination from particulate material.	The system shall be able to characterize roll material properties such as thickness , surface resistance, and index of refraction.

Project Scope: Equipment

Solution to Defect Detection Requirement

Tech: Raspberry PI; Light Scattering; Microscopy Solution to Thickness Reading Requirement

Tech: 400 - 730 nm light source; BitFlow spectrometer; 2X, 10X, 20X objective lens

BINGHAMTON UNIVERSITY STATE UNIVERSITY OF NEW YORK

Defect Detection: Optical Sensor Functionality

- Detects defects based on binary imaging threshold
- Characterizes defects based on:
 - \circ Area
 - Eccentricity
 - Mean Intensity
- Challenges:
 - Low Usability
 - Must Verify System Accuracy

Defect Detection: Optical Sensor Mounting Fixture (Existing System)

- One point of contact
- Difficult Adjustment
- Loose connection

ths.rwth-aachen.de/wp-content/uploads/sites/4/ research/HyPro/pics/spring_pendulum.png

Defect Detection: Optical Sensor Mounting Fixture (Proposed)

- Features:
 - Material: PLA
 - 30% Infill
 - Friction fit design
- Advantages
 - More stability
 - Low Cost
 - Easy installation and removal

Defect Detection: Optical Sensor Mounting Fixture (Implemented)

- More stability during rolling
- Much easier assembly/disassembly
- Two points of contact
- Easier adjustability

scienceworld.wolfram.com/physics/SpringsTwoSpringsandaMass.html

Defect Detection: Focal Range Characterization

78.5mm

Setup

50mm

65mm

Defect Detection: Pixel Conversion

- Statistical analysis has the need for real world measurements
 - \circ Relate the number of pixels to optical area in micrometers (µm)
 - Based on the sensor height, must be recalculated if the area changes

1080 pixels (6200 µm)

Defect Detection: Testing & Verification

- Material:
 - Polyimide Upilex 125-S
- Thickness
 - **125µm**
- Visually
 - 8 scratches

Defect Detection: Mean Intensity Histogram

Collected Defect Data

Defect Detection: Image Detection Array

- Characterizes defects that have area > 11µm² and eccentricity > .7 as scratches
- All other data points are either insignificant or negligible

Defect Detection: MATLAB Output

Running analyze.m... Done The number of Scratches is: 8 The number of Particulates is: 0 >>

Defect #1 has Diameter = 0.9 micrometers Area = 20.174 micrometers² Eccentricity = 0.9968 MeanIntensity = 216.2318

Defect #5 has

MeanIntensity = 207.6860

Diameter = 2.1 micrometers Area = 103.707 micrometers² Eccentricity = 0.9999

Defect #2 has Diameter = 1.9 micrometers Area = 86.673 micrometers² Eccentricity = 0.9996 MeanIntensity = 230.5322

Defect #3 has Diameter = 0.8 micrometers Area = 16.299 micrometers² Eccentricity = 0.9997 MeanIntensity = 194.5758

Defect #4 has Diameter = 1.1 micrometers Area = 26.587 micrometers² Eccentricity = 0.9996 MeanIntensity = 213.2952

Defect #6 has Diameter = 2.6 micrometers Area = 160.087 micrometers² Eccentricity = 1.0000 MeanIntensity = 203.4275

Defect #7 has Diameter = 2.5 micrometers Area = 144.289 micrometers² Eccentricity = 0.9999 MeanIntensity = 212.6468

Defect #8 has Diameter = 0.8 micrometers Area = 13.928 micrometers² Eccentricity = 0.9993 MeanIntensity = 187.1775

Defect Detection: Collected Data Analysis

Defect Detection: System Verification

- Analytical and Diagnostics Laboratory
 Wyko NT1100 Optical Profiling System
- Polyimide Sample
 - Three different scratches
- Goals: Optical Profiler Results
 - Use as a baseline for comparison and verification of Inspection Platform

Defect Detection: Wyko NT1100 Optical Profiler

- Accurate Non-Contact
 Surface Metrology Machine
- Optical Phase Shifting and White Light Vertical Scanning
 - Measure vertical distances of hills and valleys
- Six Objective Zooms
 - 1.5X to 50X
- Five Field of View Lenses
 0.5X to 2.0X

Defect Detection: Sample Optical Profiler Results

Defect Detection: System Verification

Defect	Optical Profilometer Measurement (µm)	ECD Inspection Platform Measurement (mean intensity)
2	2.08799	230.5322
6	1.44469	203.4275
8	1.044135	187.1775

Thickness Reading: Spectroscopic Reflectometry

- SunOptical Inline Spectroscopic Reflectometer
- SiO₂ coated Si wafers for testing and calibration
- Filmetrics Reflectometer for verification

Thickness Reading: The Concept

Nenkov, M. R., Tamara, G.P., (2008). Determination of thin film refractive index and thickness by means of film phase thickness. Central European Journal of Physics, 6(2), 332-343.

Thickness Reading: Spectral Peaks Analysis

$$\frac{4\pi}{\lambda_1} * dn = 2\pi i$$

 $λ_1$: Wavelength of Peak One $λ_2$: Wavelength of Peak Two

 $\frac{4\pi}{\lambda_2} * dn = 2\pi(i-1)$

d : Thickness n : Index of Refraction i : Wavenumber

Thickness Reading: Margin of Error

COTATE UNIVERSITY OF NEW YOR

Thickness Reading: Future Modeling

In the thinnest case (far left),

Intermediate Modeling Step is required to create at least two peaks

$$R = A + B * \cos\left(\frac{4\pi}{\lambda}\right) * nd$$

A, B : Fitting Parametersn : Index of RefractionLambda : Wavelengthd : Film Thickness

Nenkov, M. R., Tamara, G.P., (2008). Determination of thin film refractive index and thickness by means of film phase thickness. Central European Journal of Physics, 6(2), 332-343.

Project Budget

ltem	Original Estimate (\$)	Actual to Date (\$)
Defect Sensor *	3434.00	3434.00
Reflectometer *	7895.00	7895.00
Mount Redesign	100.00	21.50
Optical Profilometer Usage	200.00	180.00
Total	11629.00	11530.5

*Note: Sensors were already purchased prior to project start

Conclusions

- Developed and Analyzed Inspection Process for Roll to Roll Microelectronics
 - Defect sensor tested and analyzed (Requirement One)
 - Improved sensor casing and fixture
 - Verified the defect detection accuracy
 - Reflectometer tested for base case (Requirement Two)
- Remained Under Budget

References

www.hypertextbook.com/facts/1999/BrianLey

www.filmetrics.com/thicknessmeasurement/f20

Filmetrics, Inc. (2012). Understanding Film-Thickness Measurements. Retrieved April 03, 2018, from https://www.filmetrics.com/technology

Nenkov, M. R., Tamara, G.P., (2008). Determination of thin film refractive index and thickness by means of film phase thickness. *Central European Journal of Physics*, *6*(2), 332-343.

Energy.gov. (2018). [online] Available at: https://www.energy.gov/sites/prod/files/2015/02/f19/QTR%20Ch8%20-%20Roll%20To%20Roll%20Processing%20TA%20F eb-13-2015.pdf [Accessed 30 Apr. 2018].

Special Thanks to...

Dr. Gang Sun SunOptical Systems LLC

Professor Mark Poliks, Robert Malay, Jack Lombardi, Christian Bezama, Makayla Jackson *CAMM*

Shawn Wagoner, Vladimir Nikulin, Benson Chan Vincent Brady, Jim Canzler, Bob Pulz, Dave Richner *Watson Staff/Faculty*

Spectroscopic Reflectometer: Baseline

 Verification Reading

 Index of Refraction found for our SiO2 test sample